Multi-Sensor Scene Modeling Using Statistical Models for Bidirectional Texture Functions

نویسنده

  • Peter Bajcsy
چکیده

This paper presents a novel approach to multi-sensor statistical modeling of bi-directional texture functions (BTF). Our proposed BTF modeling approach is based on (1) conducting an analytical study that relates a sensor resolution to the size and shape of elements forming material surface, (2) developing a robotic system for laboratory BTF data acquisition, (3) researching an application of the Johnson family of statistical probability distribution functions (PDF) to BTF modeling, (4) selecting optimal feature space for statistical BTF modeling, (5) building a database of parameters for the Johnson family of PDFs that after interpolations forms a high-dimensional statistical BTF model and (6) researching several statistical quality metrics that can be used for verification and validation of the obtained BTF models. The motivation for developing the proposed statistical BTF modeling approach comes from the facts that (a) analytical models have to incorporate randomness of outdoor scene clutter surfaces and (b) models have to be computationally feasible with respect to the complexity of modeled interactions between light and materials. The major advantages of our approach over other approaches are (a) the low computational requirements on BTF modeling (BTF model storage, fast BTF model-based generation), (b) flexibility of the Johnson family of PDFs to cover a wide range of PDF shapes and (c) applicability of the BTF model to a wide range of spectral sensors, e.g., color, multi-spectral or hyperspectral cameras. The prime applications for the proposed BTF model are multi-sensor automatic target recognition (ATR), and scene understanding and simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methodology For Evaluating Statistically Predicted Versus Measured Imagery

We present a novel methodology for evaluating statistically predicted versus measured multi-modal imagery, such as Synthetic Aperture Radar (SAR), Electro-Optical (EO), Multi-Spectral (MS) and Hyper-Spectral (HS) modalities. While several scene modeling approaches have been proposed in the past for multi-modal image predictions, the problem of evaluating synthetic and measured images has remain...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Acquisition, Compression, and Synthesis of Bidirectional Texture Functions

Real world surfaces such as tree bark, moss, sponge, and fur often have complicated geometry that leads to effects such as self-shadowing, masking, specularity, and interreflection as the lighting or viewpoint in a scene changes. We use image based techniques to analyze and represent bidirectional texture functions, or BTFs, with correct geometric and lighting effects. A basis for the apparent ...

متن کامل

A Model Based Approach to Statistical, Multi-Modal Sensor Fusion

We propose a framework for obtaining statistical inferences from multi-modal and multisensor data. In particular, we consider a military battlefield scene and address problems that arise in tactical decision-making while using a wide variety of sensors (an infrared camera, an acoustic sensor array, a human scout, and a seismic sensor array). Outputs of these sensors vary widely, from 2D images ...

متن کامل

Multi-view coding for image-based rendering using 3-D scene geometry

To store and transmit the large amount of image data necessary for Image-based Rendering (IBR), efficient coding schemes are required. This paper presents two different approaches which exploit three–dimensional scene geometry for multi-view compression. In texture-based coding, images are converted to view-dependent texture maps for compression. In model-aided predictive coding, scene geometry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004